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Abstract

We show that a bipartite state on a tensor product of two matrix algebras is
almost surely entangled if its rank is not greater than that of one of its reduced
density matrices.
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1. Introduction

1.1. Background

Recently, Arveson [2] considered the question of when a bipartite mixed state of rank r is
almost surely entangled, and showed that this holds when r � d/2 where d is the dimension
of the smaller space. In this paper, we show that this result holds if r � d, with d now the
dimension of the larger space.

We will use results from [11] on entanglement breaking channels and exploit the well-
known isomorphism between bipartite states and completely positive (CP) maps6. We will
first consider states associated with completely positive trace-preserving (CPT) maps and then
find that extension to arbitrary bipartite states is quite straightforward.

If the rank of a bipartite state γAB is strictly smaller than that of either of its reduced
density matrices, then the state must be entangled. This is an immediate consequence of
well-known results on entanglement, and seems to have first appeared explicitly in [12]. We

4 Partially supported by National Science Foundation under grant DMS-0604900.
5 Partially supported by an NSF grant, a FRG-NSF grant and a BSF grant.
6 This isomorphism is usually attributed to Jamiolkowski [13] or to Choi [7], who used it to characterize the completely
positive maps on finite-dimensional algebras. However, it seems to have been known to operator algebraists earlier
and appeared implicitly in Arveson’s proof of lemma 1.2.6 in [1].
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include a proof in appendix A for completeness. This allows us to restrict attention to the case
in which the ranks of the reduced density matrices are equal, with one of full rank.

Although it seems natural to expect that this result is optimal, recent results of Walgate
and Scott [19] suggest otherwise. Let the Hilbert spaces HA and HB have dimensions dA

and dB , respectively. It follows from a result proved independently by Wallach [20] and by
Parthasarathy [15] for multi-partite entanglement that when s > (dA−1)(dB −1) any subspace
of HAB = HA ⊗ HB with dimension s contains some product states, and that this bound is
best possible, i.e., if s � (dA − 1)(dB − 1) then there is some subspace of dimension s with
no product states.

Walgate and Scott extended this by proving [19, corollary 3.5] that if a subspace of
HA ⊗ HB has dimension s � (dA − 1)(dB − 1) then, almost surely, it contains no product
states. For a bipartite state γAB with rank r � (dA − 1)(dB − 1), it follows that the range
of γAB almost surely contains no product states, which implies that a bipartite state γAB

with rank r � (dA − 1)(dB − 1) is almost surely entangled. Alternatively, one could apply
[19, theorem 3.4] directly to ker(γAB) to reach the same conclusion.

When dA > dB � 2, this result is stronger than ours, but for a pair of qubits, dA = dB = 2
our result is stronger. Moreover, it is easy to extend our qubit results to the general case of
bipartite states with rank r = dA � dB � 2, providing a proof quite different from that in [19].
Although our measure is constructed differently from that used in [2], our approach is similar
in the sense that we show that in a natural parameterization of the set of density matrices, the
separable ones lie in a space of smaller dimension.

In the next half of this section, we review relevant terminology, and describe the notation
and conventions we will use. Qubit channels and states are considered in section 2, and the
general case in section 3. We conclude with some remarks about other approaches, and the
question of the largest rank for which the separable states have measure zero.

1.2. Basics and notation

In this paper, we consider maps � : B(HA) �→ B(HB) and identify them with bipartite states
or, equivalently, density matrices in B(HA)⊗B(HB) via the Choi–Jamiolkowski isomorphism
as described below. Our primary interest is the situation in which HA = CdA

, in which case
we can identify B(Cd) with Md , the space of d × d matrices. However, we will also have
occasion to consider either Hilbert space H as a proper subspace of Cd for some d.

We will identify a state with a density matrix, i.e., a positive semi-definite operator ρ with
Tr ρ = 1, in B(H). To an operator algebraist this corresponds to the positive linear functional
on the algebra B(H) which takes A �→ Tr ρA. In the physics and quantum information
literature, a density matrix (or, more properly, a density operator) is often referred to as a
(mixed) state on H (because the density operator acts on H).

When HA = CdA
and HB = CdB

, we write � : MdA
�→ MdB

. In this case, let {ej }
and {fm} denote orthonormal bases for CdA

and CdB
, respectively. The isomorphism between

states and matrices arises from the fact that

Tr|fm〉〈fn|�(|ej 〉〈ek|) (1)

can be interpreted as either

(i) the matrix representative of the linear map � : MdA
�→ MdB

in the bases |fm〉〈fn| and
|ej 〉〈ek| for MdB

and MdA
respectively, or,

(ii) the density matrix γAB of a state on CdA
⊗ CdB

with elements [γAB]jm,kn in the product
basis |ej ⊗ fm〉.

2



J. Phys. A: Math. Theor. 42 (2009) 095303 M B Ruskai and E M Werner

Conversely, any state on CdA
⊗ CdB

defines a CP map. We describe this well-known fact
in detail in order to establish some conventions for interpretations of γA and γB . Observe that
(ii) is equivalent to writing γAB as a block matrix of the form

γAB = 1

dA

∑
jk

|ej 〉〈ek| ⊗ Pjk = 1

dA

∑
jk

|ej 〉〈ek| ⊗ �(|ej 〉〈ek|) (2)

with the block Pjk = �(|ej 〉〈ek|) the matrix in MdB
given by the image �(|ej 〉〈ek|). One can

write an arbitrary matrix in MdA
⊗ MdB

in the block form
∑

jk |ej 〉〈ek|Pjk and then define
�(|ej 〉〈ek|) = Pjk and extend by linearity or, equivalently,

�(A) =
∑
jk

ajkPjk (3)

when A = ∑
jk ajk|ej 〉〈ek|.

Observe that

γB = 1

dA

TrAγAB = 1

dA

∑
k

�(|ek〉〈ek|) = 1

dA

�(IA) (4a)

γA = 1

dA

TrBγAB = 1

dA

∑
jk

|ej 〉〈ek| Tr �(|ej 〉〈ek|) (4b)

and that this implies the following:

(a) � is unital, i.e., �(IA) = IB , if and only if γB = 1
dA

IB , and

(b) � is trace-preserving (TP), i.e., TrB�(X) = TrAX ∀X∈B(HA), if and only if γA = 1
dA

IA.

When Md or B(H) is equipped with the Hilbert–Schmidt inner product, one can define
the adjoint, or dual, of a map �. We denote this by �̂ and observe that this is equivalent to

Tr B†�(A) = Tr[�̂(B)]†A. (5)

A matrix � is TP if and only if its adjoint �̂ is unital.
It is a consequence of theorem 5 in [7] that the extreme points7 of the convex set of CP

maps for which γA = �̂(IB) = ρ have a state representative (often called the Choi matrix)
with rank � rank ρ. We prefer to consider CPT maps and regard the density matrices with rank
�dA as an extension of the set of extreme points. As shown in appendix B, this corresponds
to the closure of the set of extreme points. We let DC denote the set of density matrices in
B(HC) or MdC

and DC(r) denote the subset of rank r. We also define the following subsets of
DAB(r):

PA(ρ; r, s) ≡ {γAB ∈ DAB : rank γAB = r, rank γA = s and γA = ρ}, (6a)

PA(r, s) ≡ {γAB ∈ DAB : rank γAB = r and rank γA = s}. (6b)

Although the sets in (6) above are subsets of DAB ⊂ B(HA) ⊗ B(HB) � MdA
⊗ MdB

we use
the subscript A to emphasize that we impose conditions only on the marginal γA. When rank
ρ1 = rank ρ2 = dA, the map

γAB �→ (
ρ

1/2
2 ρ

−1/2
1 ⊗ IB

)
γAB

(
ρ

−1/2
1 ρ

1/2
2 ⊗ IB

)
(7)

gives an isomorphism from PA(ρ1; r, dA) to PA(ρ2; r, dA) and each of these is isomorphic to
PA

(
1
dA

IA; dA, dA

)
which is isomorphic to the set of CPT maps � whose Choi matrix has rank

dA. We will let SA(ρ; r, s), etc denote the corresponding subsets of separable states in (6).
It will be useful to introduce the notation ϒT for the map that takes a density matrix

ρ �→ T †ρT .
7 Choi’s condition for true extreme points is implicit in theorem 1.4.6 of [1].

3



J. Phys. A: Math. Theor. 42 (2009) 095303 M B Ruskai and E M Werner

2. Maps with qubit inputs

2.1. Canonical form and parameterization

Now consider the case of CPT maps on qubits for which HA = HB = C2. As observed in
[14], these maps can be written using the Bloch sphere representation in the form

�

(
w0I +

∑
k

wkσk

)
= w0I +

∑
k

(tkw0 + λkwk)σk, (8)

where σk denote the three Pauli matrices. Necessary and sufficient conditions on tk, λk which
ensure that � is CP are given in [18]. The form (8) is equivalent to representing � by a
matrix T with elements tjk = 1

2 Tr σj�(σk) so that, with subscripts j, k = 0, 1, 2, 3 and the
convention I2 = σ0

T =

⎛⎜⎜⎝
1 0 0 0
t1 λ1 0 0
t2 0 λ2 0
t2 0 0 λ3

⎞⎟⎟⎠ . (9)

As shown in [14, appendix B] an arbitrary unital map on qubits can be reduced to this
form by applying a variant of the singular value decomposition to the 3 × 3 submatrix with
j, k ∈ {1, 2, 3} using only real orthogonal rotations. Given the isomorphism between rotations
and 2 × 2 unitary matrices, this corresponds to making a change of basis on the input and
output spaces HA = CdA

= C2 and HB = CdB
= C2, respectively. Thus, for an arbitrary

unital CP map � one can find unitary U,V such that ϒV † ◦ � ◦ ϒU has the form (8) or,
equivalently, a matrix representative of the form (9).

It was shown in [18] that the maps with Choi rank � 2 are precisely those for which the
form (9) becomes

Tu,v =

⎛⎜⎜⎝
1 0 0 0
0 cos u 0 0
0 0 cos v 0

sin u sin v 0 0 cos u cos v

⎞⎟⎟⎠ (10)

with8 u, v in (−π, π ] × [0, π ]. Moreover, as shown in [16], the entanglement breaking (EB)
maps are precisely the channels which have either cos u = 0 or cos v = 0.

It follows from (10) that every element of PA

(
1
2I ; 2, 2

)
can be represented by a triple

((u, v), U, V ) consisting of a point in R2, and two unitary matrices U,V . However, some
care must be taken so that each element of PA

(
1
2I ; 2, 2

)
is counted exactly once. It suffices to

restrict (u, v) to the rectangle

	 =
[

0,
π

2

]
×

[
0,

π

2

]
. (11)

Suitable rotations will give all allowed negative values of the non-zero elements in (10), as
well as even permutations of tk and λk . Problems with overcounting occur only on the lines
u = 0, v = 0, u = v. To deal with this we define

	 =
{
(u, v) : 0 < u � π

2
, 0 < v � π

2
, u = v

}
. (12)

(The line segments on the boundary with u = π
2 and v = π

2 are included in 	 as shown in
figure 1.)

8 The interval for u is shifted from that in [18]. However, the interval [0, π ] for v was incorrectly stated as [0, π)

in [18].
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Figure 1. The rectangle 	 corresponds to the shaded region. The dashed lines are not in 	. The
lines u = π

2 and v = π
2 correspond to the EB channels.

Because different pairs of matrices U,V may give the same channel on the lines not
included in (12), we define equivalence classes as follows. Let Rt (with t = x, y, z) denote
the subset of SU(2) corresponding to the rotations around the indicated axis. We write
(U, V ) � (U ′, V ′) if there is an Rt ∈ Rt such that U ′ = RtU and V ′ = RtV or, equivalently
U ′U † = V ′V † ∈ Rt , and denote the quotient space (SU(2)×SU(2))/Rt . With this notation,
we now make some observations:

(a) The subset of EB channels consists of those channels for which either u = π
2 or v = π

2 .
(b) The line u = v corresponds to the amplitude damping channels. (It is well known that

only the case u = v = π
2 is EB; this is a completely noisy channel mapping to a fixed

pure state.) From (10) one sees that these channels are invariant under rotations about
the z-axis, and the set of amplitude damping channels in PA

(
1
2I ; 2, 2

)
is isomorphic to

(u, u) × (SU(2) × SU(2))/Rz.
(c) The line segments with u = 0 and v = 0 correspond to phase-damping channels. From

(10) one sees that these channels are invariant under rotations about the x- and y-axes,
respectively. Thus, the set of phase damping channels in PA

(
1
2I ; 2, 2

)
is isomorphic to{

(0, v) : v ∈
(

0,
π

2
,
]}

× (SU(2) × SU(2))/Rx⋃{
(u, 0) : u ∈

(
0,

π

2

]}
× (SU(2) × SU(2))/Ry.

(d) The point u = v = 0 gives the identity channel, for which rank γAB = 1.

Thus PA

(
1
2I ; 2, 2

)
is isomorphic to

	 × SU(2) × SU(2)
⋃

{(u, u)}u∈(0, π
2 ] × (SU(2) × SU(2))/Rz⋃

{(u, 0)}u∈(0, π
2 ] × (SU(2) × SU(2))/Ry⋃

{(0, v)}v∈(0, π
2 ] × (SU(2) × SU(2))/Rx

(13)

and, SA

(
1
2I ; 2, 2

)
, the subset of EB channels in PA

(
1
2I ; 2, 2

)
, is isomorphic to{(

u,
π

2

)}
{u∈(0, π

2 )}
× SU(2) × SU(2)

⋃{(
π

2
, v

)}
{v∈(0, π

2 )}
× SU(2) × SU(2)

⋃(
0,

π

2

)
× (SU(2) × SU(2))/Rx (14)

⋃(
π

2
, 0

)
× (SU(2) × SU(2))/Ry

⋃(
π

2
,
π

2

)
× (SU(2) × SU(2))/Rz.

5
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2.2. Construction of a measure

Let m2 be the normalized Lebegue measure on 	 and ν2 the normalized Haar measure on
SU(2). Then the product measure μ̃ ≡ m2 × ν2 × ν2 defines a probability measure on
�2 = 	 × SU(2) × SU(2). Although every point in �2 corresponds to an element in
PA

(
1
2I ; 2, 2

)
, it can happen, as described above, that more than one point corresponds to

the same CPT map �. Therefore, to define a measure on PA

(
1
2I ; 2, 2

)
we use the map

g : �2 → PA

(
1
2I ; 2, 2

)
which takes

((u, v), U, V ) �→ ϒV ◦ �u,v ◦ ϒU † , (15)

where �u,v denotes the CPT map whose Choi matrix is given by (10). The map g is surjective
which allows us to define a measure μ on all sets X ⊂ PA

(
1
2I ; 2, 2

)
for which g−1(X) is

measurable by

μ(X) = μ̃(g−1(X)). (16)

Since g is surjective, g−1
(
PA

(
1
2I ; 2, 2

)) = �2 which implies that PA

(
1
2I ; 2, 2

)
is measurable

and μ
(
PA

(
1
2I ; 2, 2

) = 1. Thus, μ is a probability measure on PA

(
1
2I ; 2, 2

)
.

Moreover, the entanglement breaking channels satisfy

μ

(
SA

(
1

2
I ; 2, 2

))
= μ̃

({(
u,

π

2

)
: u ∈

[
0,

π

2

]}
× SU(2) × SU(2)⋃{(

π

2
, v

)
: v ∈

[
0,

π

2

}
× SU(2) × SU(2)

)
= 0 · 1 · 1 + 0 · 1 · 1 = 0. (17)

Thus, we have proved the following.

Theorem 1. A CPT map � : M2 �→ M2 of Choi-rank 2 is almost surely not EB, or, equivalently,
a state γAB on C2 ⊗ C2 which has rank 2 and γA = 1

2I is almost surely entangled.

Since the unitary conjugations have Choi matrices of rank 1, and correspond to the set
(0, 0) × SU(2) which has measure zero, we have also proved the following result, which we
state for completeness.

Theorem 2. A CPT map � : M2 �→ M2 of Choi-rank � 2 is almost surely not EB, or,
equivalently, a state γAB on C2 ⊗ C2 which has rank � 2 and γA = 1

2I is almost surely
entangled.

2.3. Removing the TP restriction

We would like to extend the results of the previous section to

Theorem 3. If a state γAB on C2 ⊗ C2 has rank 2 and γA also has rank 2, then γAB is almost
surely entangled.

Proof. As observed after (7), PA(ρ1; r, dA) � PA(ρ2; r, dA). Indeed, the CP maps
corresponding to states in DA(ρ; 2, 2) have the form � ◦ ϒ√

2ρ with � CPT, although it
might seem more natural to consider the dual ϒ√

2ρ ◦ �̂ which takes I �→ dAρ. Next, observe

that any density matrix ρ ∈ MdA
of rank 2 can be written as U

(x 0
0 1 − x

)
U † with x ∈ (

0, 1
2

)
6



J. Phys. A: Math. Theor. 42 (2009) 095303 M B Ruskai and E M Werner

and U ∈ SU(2); the case x = 1
2 gives 1

2I independent of U. Thus the set of density matrices
ρ ∈ MdA

of rank 2 is isomorphic9 to

1
2I ∪ (

0, 1
2

) × SU(2) (18)

and the set of bipartite density matrices PA(2, 2) (for which rank γAB = rank γA = 2) is
isomorphic to

PA

(
1
2I ; 2, 2

)⋃
PA

(
1
2I ; 2, 2

) × (
0, 1

2

) × SU(2). (19)

To define a measure on this set, let m1 denote the normalized Lebesgue measure on
(
0, 1

2

)
and

let λ2,t be defined using the product measure so that

λ2,t (X) =
{

t (μ × m1 × ν2)(X) X ∈ PA

(
1
2I ; 2, 2

) × (
0, 1

2

) × SU(2)

(1−t)μ(X) X ∈ PA

(
1
2I ; 2, 2

)
,

(20)

where we can pick any t ∈ (0, 1] and μ is the measure defined in section 2.2. Then the subset
of EB channels SA(2, 2) has measure

λ2,t (SA(2, 2)) = μ
(
SA

(
1
2I ; 2, 2

))
+ μ

(
SA

(
1
2I ; 2, 2

))
m1

(
0, 1

2

)
ν2(SU(2))

= t · 0 + (1−t) · 0 · 1 · 1 = 0 (21)

independent of t ∈ (0, 1]). We can drop the requirement that γA has rank 2 by observing that
extension to all γAB of rank 2 requires only that one replaces

(
0, 1

2

)
on the right-hand side of

(19) by
[
0, 1

2

)
. Thus, we can conclude that

Corollary 4. If a state γAB on C2 ⊗ C2 has rank 2, then γAB is almost surely entangled.

2.4. Two-dimensional subspaces of Cd

We can use the isomorphism between C2 and any Hilbert space of dimension 2 to replace
either HA or HB by a two-dimensional subspace of Cd . However, for later use, we now
want to extend our qubit results to the somewhat more general situation of the set of all CPT
maps � : C2 �→ CdB

whose range has the form B(span{|v1〉, |v2〉}) with |v1〉, |v2〉 ∈ CdB
.

Here, we do not fix the range, but consider all CPT maps whose range corresponds to some
two-dimensional subspace of CdB

.
Observe that in the polar decomposition ϒV † ◦ � ◦ ϒU leading to the canonical form (8)

we need only replace V by an isometry V : C2 �→ HB . Then in (13) and (14), the first use of
SU(2) in each subset must be replaced by Vd which is defined as the subset of d × 2 matrices
satisfying V †V = I2. By theorem A.2 of [2], Vd can be given the structure of a real analytic
manifold with a probability measure vd (which is unique if it is required to be left-invariant
under SU(d)). Although V is not a group, we can define equivalence classes as before with
(V ,U) � (V ′, U ′) if there is a Rt ∈ Rt such that V ′ = V Rt and U ′ = URt . Then the
previous arguments go through with SU(2) × SU(2) replaced by Vd × SU(2) in section 2.1
and the corresponding use of ν2 in section 2.2 by vd .

9 Here we use the fact that σxρσx exchanges the eigenvalues. This is quite different from the situation in (12) where
we could not assume u < v because the permutation in S3 which exchanges 1 ↔ 2 cannot be implemented with a
rotation.

7
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3. General maps

3.1. CPT maps with dA > 2

We now assume dA � dB � 2 and extend these results to bipartite states on CdA
⊗ CdB

with
γA = 1

dA
IA. We begin by considering a CPT map � : MdA

�→ MdB
with Choi-rank dA. By

theorem 5C of [11], which is equivalent to corollary 14, � can always be written in the form

�(ρ) =
∑

k

|gk〉〈gk|〈ψk, ρψk〉 (22)

where {gk} is an orthonormal basis for CdA
, but the states ψk ∈ CdB

need not be orthogonal or
even linearly independent. In the basis gk , the Choi matrix for � has the form

γAB = 1

dA

∑
k

|gk〉〈gk| ⊗ |ψk〉〈ψk|, (23)

which implies that γAB is block diagonal with each block a dB × dB rank-one projection. Let
us first assume that ψ1 and ψ2 are linearly independent.

Now let Pk ≡ |ψk〉〈ψk| and write (23) explicitly in a block form as

γAB = 1

dA

⎛⎜⎜⎜⎜⎜⎝
P1 0 0 0 . . . 0
0 P2 0 0 . . . 0
0 0 P3 0 . . . 0
...

. . .
...

0 0 . . . 0 . . . PdA

⎞⎟⎟⎟⎟⎟⎠ (24)

and consider a density matrix of the form

1

dA

⎛⎜⎜⎜⎝
Q 0 0 . . . 0
0 P3 0 . . . 0
...

. . .
...

0 . . . 0 . . . PdA

⎞⎟⎟⎟⎠ (25)

where Q ∈ M2 ⊗ MdB
is a positive semi-definite 2dB × 2dB matrix of rank 2 satisfying

TrBQ = I2. Now a density matrix of the form (25) is separable if and only if 1
2Q is separable.

However, 1
2Q is a density matrix of the form considered in section 2.4.

LetYdA
({gk}, {ψk}) denote the subset ofPA

(
1
dA

IA; dA, dA,
)

consisting of density matrices
of the form (25) or, equivalently,

YdA
({gk}, {ψk}) =

{
Q ⊕

dA∑
k=3

|gk〉〈gk| ⊗ |ψk〉〈ψk| : Q ∈ XAB, TrBQ = I2

}
, (26)

where ⊕ denotes the direct sum and

XAB = B(span{|g1〉, |g2〉} ⊗ B(span{|ψ1〉, |ψ2〉}). (27)

The set of projections |ψk〉〈ψk| ∈ MdB
is isomorphic to S2dB−1, the 2 unit sphere in R2dB

.
For a given |g1〉, |g2〉, the set XAB depends only on span {|ψ1〉, |ψ2〉} and not the choice of
individual vectors. Therefore, we can identify each point in

�dA
≡ 	2 × VdB

× SU(2) × SU(dA)/SU(2) × S2dB−1 × . . . × S2dB−1︸ ︷︷ ︸
dA−2

= 	2 × VdB
× SU(dA) × S2dB−1 × · · · × S2dB−1︸ ︷︷ ︸

dA−2

(28)
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with a density matrix γAB in YdA
≡ ⋃

{gk},{ψk} YdA
({gk}, {ψk}), the set of all density matrices

of the form (25). (Note that S2dB−1 occurs dA − 2 times in (28) corresponding to the choices
of ψk for k = 3, 4, . . . , n. The set YdA

({gk}, {ψk}) depends only on span {|ψ1〉, |ψ2〉} = range
V with V ∈ VdB

, with non-orthogonal vectors |ψ1〉, |ψ2〉 associated with non-unital qubit
channels via isomorphism.)

Let m2 and vd be measures as in sections 2.2 and 2.4, let νd be the normalized Haar
measure on SU(d) and let n2dB−1 be a probability measure on S2dB−1. We define a normalized
measure μ̃ on �dA

by the product measure

μ̃ = m2 × vdB
× ν2 × νdA/2 × n2dB−1 × · · · × n2dB−1︸ ︷︷ ︸

dA−2

. (29)

To obtain a measure on YdA
we proceed as in section 2.2. Let G : �dA

�→ YdA
be the map that

sends an element
(
(u, v), V ,U, |ψ3〉, . . . , |ψdA

〉) to the corresponding density matrix in YdA

and define

μ(X) = μ̃(G−1(X)) (30)

whenever X ⊂ YdA
for which G−1(X) is measurable.

As explained above, corollary 14 implies that SA

(
1
dA

IA; dA, dA

) ⊂ YdA
. Then, proceeding

as in (17), one finds

μ

(
SA

(
1

dA

IA; dA, dA

))
= 0 · 1 · 1 · 1dA−2 = 0. (31)

Moreover, for any reasonable extension of μ from YdA
to all of PA

(
1
dA

IA; dA, dA

)
, the EB

subset will still have measure zero. In particular, one could simply let

ω(X) =

⎧⎪⎨⎪⎩
μ(X) if X ⊂ YdA

0 if X ⊂ PA

(
1

dA

Id; dA, dA

)∖
YdA

(32)

and note that ω is absolutely continuous with respect to any other extension of μ.
Thus, we have reduced the general case to that of dA = 2 and conclude that

Theorem 5. Let γAB be a state on CdA
⊗ CdB

which has rank dA � dB � 2 and for which
γA = 1

dA
IA. Then γAB is almost surely entangled.

Remark. The assumption that ψ1 and ψ2 are linearly independent can be dropped because
that case corresponds to u = v = π

2 in (8) and is included implicitly in our analysis. The
set of channels for which all ψj are identical also has measure zero, except for the excluded
situation dB = 1, for which all states are separable.

3.2. Reduction of the general case to CPT

As observed earlier, when rank ρ = dA

PA(ρ; dA, dA) =
{(√

dAρ ⊗ IB

)
γAB

(√
dAρ ⊗ IB

)
: γAB ∈ PA

(
1

dA

IA; dA, dA

)}
(33)

is isomorphic to PA

(
1
dA

IA; dA, dA

)
. But parameterizing the set of density matrices of rank dA

is a bit more subtle than for dA = 2 because of the need to consider degenerate eigenvalues,
for situations beyond 1

dA
I . However, this only affects a set of measure zero and can be dealt

9
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with as in the preceding sections. To describe the set of density matrices of rank dA consider
the set of vectors

Z =
{

z = (ζ1, ζ2, . . . ζdA
) : 0 < ζ1 � ζ2 � · · · � ζdA

,
∑

k

ζk = 1

}
(34)

in the positive facet of the 1 unit ball of RdA
. We can associate each z ∈ Z with a diagonal

matrix �z so that that the map h : (z, U) �→ U�zU
† takes Z × SU(dA) onto DA(dA), the set

of density matrices in MdA
with full rank dA. Since we can identify Z with a subset of RdA−1,

we put normalized Lebesgue measure mdA−1 on Z, and let

ηdA
(X) = (mdA−1 × νdA

)(h−1(X)) (35)

whenever X ⊂ DA(dA) and h−1(X) is measurable. Then it follows from (31) that for any
extension ω of μ, the product measure ω × ηdA

gives a measure on PA(dA, dA) for which the
separable states SA(dA, dA) have measure 0 · 1 = 0. Thus, we have proved

Theorem 6. If a state γAB on CdA
⊗ CdB

has rank dA � dB � 2 and rank(γA) = dA then γAB

is almost surely entangled.

3.3. Further results

Theorem 11 states that if the rank of γA is dA and the rank of γAB is strictly smaller than dA,
then γAB is entangled. Thus r < dA implies that PA(ρ; r, dA) consists entirely of entangled
states. If we combine this with our results for r = s = dA we obtain several additional
theorems, which we state for completeness.

Theorem 7. Assume dA � dB � 2. If a state γAB on MdA
⊗ MdB

has rank γAB � dA = rank
γA, then γAB is almost surely entangled.

By using the isomorphism between Cd and any Hilbert space of dimension d we can
restate this by letting HA = range γA and HB = range γB and considering γAB as a state on
B(HA) ⊗ B(HA).

Theorem 8. If a state γAB on MdA
⊗ MdB

has rank γAB � rank γA and rank γA � rank
γB � 2, then γAB is almost surely entangled.

We also find that we can eliminate the need to consider the rank of γA.

Theorem 9. Assume dA � dB � 2. If a state γAB on MdA
⊗ MdB

has rank γAB � dA, then
γAB is almost surely entangled.

Proof. Let Z denote the closure of (34). Since this simply replaces the strict inequality 0 < ζ1

by 0 � ζ1, the set Z × SU(d) includes all density matrices in MdA
so that

Z\Z × SU(2) = h−1({ρ ∈ PA : rank ρ < dA}). (36)

Now extend the measure η in (35) to all of DA. The set of all separable states γAB with rank
γAB � dA is SA(dA) ≡ ⋃

s�dA
SdA

(dA, s). The subset of separable states with rank γA < dA

satisfies ⋃
s<dA

SdA
(dA, s) ⊂ {ρ ∈ PA : rank ρ < dA}. (37)

But

ηdA
({ρ ∈ PA : rank ρ < dA}) = mdA−1(Z\Z)νdA

(SU(2)) = 0 · 1. (38)

10
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Thus

(ωdA
× ηdA

)(S(dA)) = (ωdA
× ηdA

)(SdA
(dA, dA)) + (ωdA

× ηdA
)

(⋃
s<dA

SdA
(dA, s)

)
� 0 · 1 + 1 · 0 = 0. (39)

�

4. Final comments

4.1. Remarks on measure

If we apply the argument used to prove theorem 9 to the subset of states with γA = 1
dA

IdA

or equivalently, combine theorems 5 and 11 we obtain the following result which we state in
terms of channels.

Corollary 10. Assume dA � dB � 2. Then the set of CPT maps � : CdA
�→ CdB

whose Choi
matrix has rank r � dA is almost surely entanglement breaking.

As shown in appendix B, the closure of the set of extreme points of CPT maps
� : CdA

�→ CdB
is precisely the set of channels whose Choi matrix has rank � dA. Because

the extreme points of a convex set lie on the boundary, their closure always has measure
zero. Thus, corollary 10 is a special case of a well-known, more general fact from convex
geometry. An alternative, and somewhat simpler, approach to proving theorem 6 would be to
use this fact together with theorem 15. However, we feel that it is useful to see the specific
paramaterizations which lead to our results. In our approach, one sees that everything really
follows from the basic paramaterization of extreme points for qubit channels, and the fact that
(up to sets of measure zero) the relevant sets of bipartite states can be parameterized as direct
products on which we can put product measures.

One could extend corollary 10 to the set of CP maps for which �̂(IB) = ρ with ρ ∈ DA(r)

fixed, again using the fact that the closure of the set of extreme points has measure zero. Then
we can conclude that the subset of separable states ∪s�rS(ρ; r, s) has measure zero with
respect to a measure on ∪s�rP(ρ; r, s). However, we cannot go directly from this observation
to theorem 9 by taking the

⋃
ρ∈DA

because the set DA is uncountable. One would still need the
argument in section 3.2. What this observation about extreme points does tell us is that our
results are not sensitive to the choice of measure. The fundamental issue is that the bipartite
states can be parameterized as a smooth manifold on which the separable ones correspond to
a space of smaller dimensions.

There is one unsatisfying aspect of using the inverse image to define a measure, as in
(16); namely, that it does not reflect the fact that different unitaries give the same map on some
lines in 	. An alternative would be to first define separate measures on the different regions
in (13), e.g., on {(u, u)}u∈(0, π

2 ] × (SU(2) × SU(2))/Rz, use the product measure m1 × ν̃z

where m1 is a normalized Lebesque measure on
(
0, π

2

)
and ν̃z is Haar measure on the group

(SU(2) × SU(2))/Rz. One could then combine the measures on the four subsets in (13) as
in (20) using, say, weights 1 − tx − ty − tz, tz, tx, ty with tm � 0 and

∑3
m=1 tm � 1. However,

given that each of the line segments with u = π
2 , u = v and v = π

2 has measure zero in 	, the
most natural choice weight would be tm = 0, equivalent to simply omitting the corresponding
channels (or states).

In fact, all situations in which a quotient space is needed, as in sections 2.2 and 3.2
have measure zero in our inverse image approach. Intuitively, one would like to simply

11
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[−1, 1, −1] [−1, −1, 1]

[1, −1, −1]

Figure 2. The left figure shows the tetrahedron of unital qubit channels with the octahedron of the
EB subset. The right figure shows one of the faces of the tetrahedron, corresponding to channels
with Choi-rank 3, with the shaded region as the subset of EB channels.

observe that we can identify DA( 1
2I ; 2, 2) with a subset of

[
0, π

2

] × [
0, π

2

]
that satisfies

	 ⊂ DA

(
1
2I ; 2, 2

) ⊂ 	 and then observe that since

μ(	) � μ
(
DA

(
1
2I ; 2, 2

))
� μ(	) (40)

and μ(	) = μ(	) = 1, one must have μ
(
DA

(
1
2I ; 2, 2

) = 1. But to use this approach, one
must establish that DA

(
1
2I ; 2, 2

)
can be identified with a measurable subset of 	.

4.2. Optimality

It is natural to ask if the results in theorems 7 and 8 are optimal. For dA > 2, it is clear that
the results which follow from those of Walgate and Scott [19] are better. Thus, the question
becomes whether or not rank γAB � (dA − 1)(dB − 1) is optimal. This does not follow from
the subspace theorems in [19] because when rank γAB = 2 > (dA − 1)(dB − 1) the product
states can form a set of measure zero in a subspace of HA ⊗ HB . However, we know that the
separable ball in B(HA ⊗HB) has strictly positive measure [4, 5, 21] so that the optimal rank
must be strictly smaller than dAdB .

In the case of qubits, we know that theorem 3 is stronger than the results implied by
Walgate and Scott [19], and that when rank γAB = 4, the separable states have strictly positive
measure. If we restrict attention to those states γAB with rank 3 and γA = γB = 1

2I or,
equivalently, the unital CPT maps with Choi-rank 3, we can use the familiar picture of a
tetrahedron [8, 16, 18]. The rank-3 states correspond to the faces, and the subset of separable
states on each face to the smaller triangle whose vertices are midpoints of the edges is shown
in figure 2. Thus, the unital CPT maps with Choi-rank 3 have measure 0.25 with respect to all
the unital CPT maps on qubits. However, we do not know if something similar holds when the
restriction to unital maps is removed. Thus, the question of whether PA

(
1
2I ; 3, 2

)
has measure

zero or positive measure seems to be open.
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Appendix A. Some separability theorems

For completeness, we now state and sketch proofs of some results that are well known and/or
proved in [11]. The first result appeared as [12, theorem 1] in a slightly stronger form.

Theorem 11. If rank γAB < dA = rank γA, then γAB is not separable.

Proof. First observe that γAB is separable if and only if

γ̃AB ≡ 1

dA

(IA ⊗ γA)−1/2γAB(IA ⊗ γA)−1/2 (A.1)

is separable. But γ̃A = 1
dA

IA. Now both the reduction and majorization criteria [6, 9] for
separability of a state ρAB imply that the largest eigenvalue must satisfy ‖ρAB‖∞ � ‖ρB‖∞.
But rank γ̃AB = rank γAB < dA implies that γ̃AB has at least one eigenvalue > 1

dA
. Thus

‖γ̃AB‖∞ > 1
dA

= ‖γ̃B‖∞, and it follows that both γ̃AB and γAB are entangled. �

When rank γA < dA, one can regard the underlying Hilbert space HA to be range
γA = (ker γA)⊥. One then obtains

Corollary 12. If rank γAB < rank γA, then γAB is not separable.

The following lemma goes back at least to [10] and a simpler proof was given in [11]. To
emphasize that one need not assume dA = dB (and because of typos in [11]) we include a full
proof here.

Lemma 13. Let ρAB be a density matrix on HA ⊗ HB . If ρAB is separable, ρAB has rank d,
and ρA has rank d, then ρAB can be written as a convex combination of products of pure states
using at most d products.

Proof. Since ρAB is separable it can be written in the form

ρAB =
k∑

i=1

λi |ai〉〈ai | ⊗ |bi〉〈bi |. (A.2)

with ‖ai‖ = ‖bi‖ = 1. Assume that k > d and that ρAB cannot be written in the form
(A.2) using less than k products. Since ρA has exactly rank d, there is no loss of generality
in assuming that the vectors above have been chosen so that |a1〉, |a2〉, . . . , |ad〉 are linearly
independent. Moreover, since ρAB has rank d < k, the first d + 1 vectors |ai〉 ⊗ |bi〉 must be
linearly dependent so that one can find αj such that

d+1∑
j=1

αj |aj 〉 ⊗ |bj 〉 = 0. (A.3)

Now let {|ek〉} be an orthonormal basis for HB . Then

d+1∑
j=1

αj 〈ek, bj 〉|aj 〉 = 0 ∀ k. (A.4)

Since the first d vectors |aj 〉 are linearly independent, the solution of
∑

j xj |aj 〉 = 0 is unique
up to a multiplicative constant. Applying this to the coefficients in (A.4) one finds that there
are numbers νk such that αj 〈ek, |bj 〉 = νkxj . Let |ν〉 ≡ ∑

k νk|ek〉. Then αj |bj 〉 = xj |ν〉.
Since multiplying xj by c changes νk → 1

c
νk , one can assume that xj has been chosen so that

13



J. Phys. A: Math. Theor. 42 (2009) 095303 M B Ruskai and E M Werner

‖ν‖ = 1 = ‖bj‖. Then αj |bj 〉 = xj eiθj |ν〉, and αj = 0 implies |bj 〉 = eiθj |ν〉. Therefore,
one can rewrite (A.2) as

ρAB =
∑

j :αj =0

λj |aj 〉〈aj | ⊗ |bj 〉〈bj | +
∑

j :αj =0

λj |aj 〉〈aj | ⊗ |ν〉〈ν|. (A.5)

Suppose that t of the αj are nonzero. Since the vectors {|aj 〉 : αj = 0} are linearly dependent,
the density matrix

∑
j :αj =0 λj |aj 〉〈aj | has rank strictly < t and can be rewritten in the form∑s

k=1 λ′
j |a′

j 〉〈a′
j | using only s < t vectors |a′

j 〉 . Substituting this into (A.5) gives ρAB as
a linear combination of products using strictly less than k contradicting the assumption that
(A.2) used the minimum number. �

Corollary 14. If γAB is separable and γA = 1
dA

IA, then γAB can be written in the form

γAB =
∑

k

1

dA

|gk〉〈gk| ⊗ |ψk〉〈ψk| (A.6)

with gk an orthonormal basis for CdA
.

Proof. Since γAB is separable it is a convex combination of projections onto product states
and can be written in the form

γAB =
∑

k

ξk|gk ⊗ ψk〉〈gk ⊗ ψk|. (A.7)

Since rank γA is dA by assumption, it follows from the lemma in appendix A that we can
assume k = 1, 2, . . . , dA (duplicating terms if < dA are needed). But then, the assumption

1

dA

IA = γA =
∑

k

ξk|gk〉〈gk| (A.8)

holds if and only if ξk = 1
dA

∀k and the vectors gk are orthonormal. �

Appendix B. Closure of the set of extreme points

It is often useful to consider the set of all CPT maps with Choi rank � dA. In [18] these
were called generalized extreme points and shown to be equivalent to the closure of the set of
extreme points for qubit maps. This is true in general10. We repeat here an argument from
[17]. Let E(dA, dB) denote the extreme points of the convex set of CPT maps from MdA

to
MdB

.

Theorem 15. The closure E(dA, dB) of the set of extreme points of CPT maps � : MdA
�→ MdB

is precisely the set of such maps with Choi rank at most dA.

Proof. Let Ak be the Choi–Kraus operators for a map � : MdA
�→ MdB

with Choi-rank r � dA

which is not extreme, and let Bk be the Choi–Kraus operators for a true extreme point with
Choi-rank dA. When r < dA extend Ak by letting Am = 0 for m = r +1, r +2, . . . , dA and
define Ck(ε) = Ak + εBk . There is a number ε∗ such that the d2

A matrices C
†
j (ε)Ck(ε) are

linearly independent for 0 < ε < ε∗. To see this, for each C
†
j (ε)Ck(ε) ‘stack’ the columns to

give a vector of length d2
A and let M(ε) denote the d2

A × d2
A matrix formed with these vectors

as columns. Then det M(ε) is a polynomial of degree d4
A, which has at most d4

A distinct roots.
Since the matrices A

†
jAk were assumed to be linearly dependent, one of these roots is 0; it

10 Arveson [3] has pointed out that theorem 15 can also be proved using results in [2].
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suffices to take ε∗ the next largest root (or +1 if no roots are positive). Thus, the operators
C

†
j (ε)Ck(ε) are linearly independent for ε ∈ (0, ε∗). The map ρ �→ ∑

k Ck(ε)ρC
†
k(ε) is CP,

with ∑
k

C
†
k(ε)Ck(ε) = (1 + ε2)I + ε

(
A

†
kBk + B

†
kAk

) ≡ S(ε).

For sufficiently small ε the operator S(ε) is positive semi-definite and invertible, and the map
�ε(ρ) = Ck(ε)S(ε)−1/2ρS(ε)−1/2C

†
k(ε) is a CPT map with Kraus operators Ck(ε)S(ε)−1/2.

Thus, one can find εc such that ε ∈ (0, εc) implies that �ε ∈ E(dA, dB). It then follows from
lim

ε→0+
�ε = � that � ∈ E(dA, dB).

�
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